The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail Lymnaea stagnalis.

نویسندگان

  • Hiroshi Sunada
  • Taichi Sakaguchi
  • Tetsuro Horikoshi
  • Ken Lukowiak
  • Manabu Sakakibara
چکیده

The shadow-induced withdrawal response in Lymnaea stagnalis is mediated by dermal photoreceptors located on the foot, mantle cavity, and skin around the pneumostome area. Here, we determined whether we could obtain a neural correlate of the withdrawal response elicited by a shadow in a higher-order central neuron that mediates withdrawal behavior. We measured the electrophysiological properties of the higher-order interneuron Right Pedal Dorsal 11 (RPeD11), which has a major role in Lymnaea withdrawal behavior. In semi-intact preparations comprising the circumesophageal ganglia, the mantle cavity and the pneumostome, but not the foot and eyes, a light-on stimulus elicited a small short-lasting hyperpolarization and a light-off stimulus elicited a depolarization of RPeD11. We also determined that dermal photoreceptors make a monosynaptic contact with RPeD11. The dermal photoreceptor afferents course to the circumesophageal ganglia via the anal and genital nerves to the visceral ganglion, and/or via the right internal and external parietal nerves to the parietal ganglion. Finally, in addition to responding to photic stimuli, RPeD11 responds to both mechanical and chemical stimuli delivered to the pneumostome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of the respiratory pattern-generating neurons by an identified whole-body withdrawal interneuron of Lymnaea stagnalis

Respiration and the whole-body withdrawal are two incompatible behaviors in the freshwater snail Lymnaea stagnalis. Whole-body withdrawal behavior is believed to be higher on the behavioral hierarchy than respiratory behavior. A central pattern generator (CPG) underlies respiratory behavior; whole-body withdrawal is mediated by a network of electrically coupled neurons. In this study, we provid...

متن کامل

Morphological and physiological characteristics of dermal photoreceptors in Lymnaea stagnalis

Dermal photoreceptors located in the mantle of Lymnaea stagnalis were histologically and physiologically characterized. Our previous study demonstrated that the shadow response from dermal photoreceptors induces the whole-body withdrawal response. Through the interneuron, RPeD11, we detected that the light-off response indirectly originated from a dermal photoreceptor. Previous observations, ba...

متن کامل

A neuronal network from the mollusc Lymnaea stagnalis.

The morphology, electrophysiology, and synaptic inputs of a ventrally located neuronal network from the CNS of the pond snail Lymnaea stagnalis was investigated. Three large, previously identified neurons [55] known as right parietal ventral one, two, and three (RPV1,2,&3) were found to be electrically coupled to one another. Coupling between either RPV1&2 or RPV1&3 was weak while coupling betw...

متن کامل

Coordination of locomotor and cardiorespiratory networks of Lymnaea stagnalis by a pair of identified interneurones.

1. The morphology and electrophysiology of a newly identified bilateral pair of interneurones in the central nervous system of the pulmonate pond snail Lymnaea stagnalis is described. 2. These interneurones, identified as left and right pedal dorsal 11 (L/RPeD11), are electrically coupled to each other as well as to a large number of foot and body wall motoneurones, forming a fast-acting neural...

متن کامل

Electrophysiological characteristics of feeding-related neurons after taste avoidance Pavlovian conditioning in Lymnaea stagnalis

Taste avoidance conditioning (TAC) was carried out on the pond snail, Lymnaea stagnalis. The conditional stimulus (CS) was sucrose which elicits feeding behavior; while the unconditional stimulus (US) was a tactile stimulus to the head which causes feeding to be suppressed. The neuronal circuit that drives feeding behavior in Lymnaea is well worked out. We therefore compared the physiological c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2010